Step of Proof: eq_int_cases_test
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
eq
int
cases
test
:
A
:Type,
x
,
y
:
A
,
P
:(
A
),
i
,
j
:
.
(
P
(if (
i
=
j
) then
x
else
y
fi ))
(
P
(if (
i
=
j
) then
x
else
y
fi ))
latex
by ((UnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
A
: Type
C1:
2.
x
:
A
C1:
3.
y
:
A
C1:
4.
P
:
A
C1:
5.
i
:
C1:
6.
j
:
C1:
7.
P
(if (
i
=
j
) then
x
else
y
fi )
C1:
P
(if (
i
=
j
) then
x
else
y
fi )
C
.
Definitions
t
T
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
eq
int
wf
,
ifthenelse
wf
origin